30 research outputs found

    Alternative Geometries for 3D Bioprinting of Calcium Phosphate Cement as Bone Substitute

    Get PDF
    In the literature, many studies have described the 3D printing of ceramic-based scaffolds (e.g., printing with calcium phosphate cement) in the form of linear structures with layer rotations of 90°, although no right angles can be found in the human body. Therefore, this work focuses on the adaptation of biological shapes, including a layer rotation of only 1°. Sample shapes were printed with calcium phosphate cement using a 3D Bioplotter from EnvisionTec. Both straight and wavy spokes were printed in a round structure with 12 layers. Depending on the strand diameter (200 and 250 µm needle inner diameter) and strand arrangement, maximum failure loads of 444.86 ± 169.39 N for samples without subsequent setting in PBS up to 1280.88 ± 538.66 N after setting in PBS could be achieved

    A NOVEL STUDY EXAMINING COGNITIVE-MOTOR INTERFERENCE AFTER ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION

    Get PDF
    The aim of this study is to assess the feasibility of examining cognitive motor interference (CMi) in athletes following anterior cruciate ligament reconstruction (ACLR) and return to sport through electroencephalography (EEG) and three-dimensional motion capture recordings. A 128-electrode EEG system is used to track brain wave patterns for specific biomarkers of CMi during sitting and balance tasks. An 8-camera Optitrack system is used to obtain three-dimensional kinematics during anticipated and unanticipated drop vertical jumps. Preliminary EEG N200 amplitudes (ACL: -4.99 ± 2.39; Control: -7.75 ± 5.83) and peak knee flexion (ACL: 93.29 ± 12.92°; Control: 92.87 ± 7.17°) during dual-task and unanticipated landings, respectively, demonstrate the feasibility of this study. Future work will continue to assess the effect of CMi on risk factors for secondary ACL injury

    The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima.

    Get PDF
    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.This work was supported by the following grants: NHGRIU54HG003273 to R.A.G; EU Marie Curie ITN #215781 “Evonet” to M.A.; a Wellcome Trust Value in People (VIP) award to C.B. and Wellcome Trust graduate studentship WT089615MA to J.E.G; Marine rhythms of Life” of the University of Vienna, an FWF (http://www.fwf.ac.at/) START award (#AY0041321) and HFSP (http://www.hfsp.org/) research grant (#RGY0082/2010) to KT-­‐R; MFPL Vienna International PostDoctoral Program for Molecular Life Sciences (funded by Austrian Ministry of Science and Research and City of Vienna, Cultural Department -­‐Science and Research to T.K; Direct Grant (4053034) of the Chinese University of Hong Kong to J.H.L.H.; NHGRI HG004164 to G.M.; Danish Research Agency (FNU), Carlsberg Foundation, and Lundbeck Foundation to C.J.P.G.; U.S. National Institutes of Health R01AI55624 to J.H.W.; Royal Society University Research fellowship to F.M.J.; P.D.E. was supported by the BBSRC via the Babraham Institute;This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pbio.100200

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Alternative Geometries for 3D Bioprinting of Calcium Phosphate Cement as Bone Substitute

    No full text
    In the literature, many studies have described the 3D printing of ceramic-based scaffolds (e.g., printing with calcium phosphate cement) in the form of linear structures with layer rotations of 90°, although no right angles can be found in the human body. Therefore, this work focuses on the adaptation of biological shapes, including a layer rotation of only 1°. Sample shapes were printed with calcium phosphate cement using a 3D Bioplotter from EnvisionTec. Both straight and wavy spokes were printed in a round structure with 12 layers. Depending on the strand diameter (200 and 250 µm needle inner diameter) and strand arrangement, maximum failure loads of 444.86 ± 169.39 N for samples without subsequent setting in PBS up to 1280.88 ± 538.66 N after setting in PBS could be achieved

    Towards bio-based tapered block copolymers: the behaviour of myrcene in the statistical anionic copolymerisation

    Get PDF
    To explore the potential of myrcene (Myr) as a bio-based monoterpene comonomer for styrenic copolymers and to establish its general applicability for the carbanionic copolymerisation, several statistical copolymerisations of myrcene and common monomers like isoprene (I), styrene (S) and 4 methylstyrene (4MS) were carried out in cyclohexane and monitored by in situ 1H NMR spectroscopy. Real-time NMR kinetic studies permitted the determination of the reactivity ratios and the composition profile for each monomer combination. While the copolymerisation of Myr/I yielded a gradient copolymer and reactivity ratios of moderate disparity (rMyr = 4.4; rI = 0.23), the statistical copolymerisation of Myr/S and Myr/4MS afforded block-like, tapered copolymers due to highly diverging reactivity ratios (rMyr = 36; rS = 0.028 and rMyr = 140; r4MS = 0.0074). Furthermore, a terpolymerisation of Myr/I/4MS was studied by real-time NMR kinetics, revealing an alteration of the composition profile of 4MS towards a more block-like structure. Based on the kinetic studies, a series of Myr/I/4MS terpolymers and Myr/S copolymers was prepared by statistical living anionic copolymerisation. All copolymers showed narrow molecular weight distributions (SEC) and two glass transition temperatures (Tg,1 = -51 to¬ 62 °C; Tg,2 = 93 ¬to 107 °C), suggesting phase segregation. TEM and SAXS measurements revealed highly ordered lamellar morphologies for all copolymers with long range correlation and confirmed the block-like structure and behaviour of Myr/S and Myr/4MS copolymers prepared by statistical carbanionic copolymerisation
    corecore